Skip to main content

Advertisement

Log in

Methane Conversion to Hydrogen and Higher Hydrocarbons by Double Pulsed Glow Discharge

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Pulsed atmospheric glow plasma, sustained by corona discharge, was utilized to convert methane. Analysis by gas chromatography showed that hydrogen and C2-products are the main constituents of outlet mixture while C2+-products with small concentrations were also detected. The chemical energy efficiency turned out to be about 9% for the best result obtained by this type of reactor. It has been shown that more improvement of energy efficiency is possible by increasing the pulse repetition rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • V.D. Sokolovskii N. J. Coville A. Parmaliana I. Eskendirov M. Makoa (1998) Catal. Today 42 191–195

    Google Scholar 

  • H. D. Gesser N. R. Hunter (1998) Catal. Today 42 183–189

    Google Scholar 

  • L. Bromberg D. R. Cohn A. Rabinovich N. Alexeev (1999) Int. J. Hydrogen Energy 24 1131–1137

    Google Scholar 

  • B. Elliasson M. Hirth U. Kogelschatz (1987) J. Phys D: Appl. Phys. 20 1421–1457

    Google Scholar 

  • P. A. Balakrishnan A. Anmagiri P. G. Rao Particle2002 (2002) J. Electrostatics 56 77–86

    Google Scholar 

  • Chang Jen-Shih (2001) Sci. Technol Adv. Mater. 2 571–576

    Google Scholar 

  • B. M. Penetrante M. C. Hsiao B. T. Merritt G. E. Vogtlin P. Henrik Wallman (1995) IEEE Trans Plasma Sci. 23 IssueID4 679–687

    Google Scholar 

  • Y .X. Zhoua P. Yanb Z. X. Chenga M. Nifukuc X. D. Lianga Z. C. Guan (2003) Powder Technol. 135-136 345–353

    Google Scholar 

  • B. Eliasson U. Kogelschatz (1991) IEEE Trans Plasma Sci. 19 IssueID6 1063

    Google Scholar 

  • J. M. Cormier I. Rusu (2001) J. Phys D: Appl. Phys. 34 2798–2803

    Google Scholar 

  • C. J. Liu R. Mallinson L. Lobban (1998) J. Catal 179 326–334

    Google Scholar 

  • M. A. Malik X. Z. Jiang (1999) Plasm Chem Plasm Proc. 19 IssueID4 505–512

    Google Scholar 

  • C. Liu A. Marafee B. Hill G. Xu R. Mallinson L. Lobban (1996) ArticleTitleInd. Eng Chem. Res. 35 3295–3301

    Google Scholar 

  • M. S. Ioffe S. D. Pollington J. K. S. Wan (1995) J. Catal 151 349–355

    Google Scholar 

  • S. Y. Savinov H. Lee H. K. Song B. K. Na (1999) Ind. Eng Chem. Res. 38 2540–2547

    Google Scholar 

  • J. Huang S. Suib J. B. Harrison F. Knight (2001) Res. Chem Intermed. 27 IssueID6 643–658

    Google Scholar 

  • J. Wan M. Tse H. Husby M. Depew (1990) J. Microwave Power Electromagn. Energy 25 IssueID1 32–38

    Google Scholar 

  • T. Jiang Y. Li C. J. Liu G. H. Xu B. Eliasson (2002) Catal Today 72 229–235

    Google Scholar 

  • D. W. Larkin L. L. Lobban R. G. Mallinson (2001) Ind. Eng Chem. Res. 40 1594–1601

    Google Scholar 

  • L. M. Zhou B. Xue U. Kogelschatz B. Eliassan (1998) Plasm Chem. Plasm. Proc. 18 IssueID3 375–393

    Google Scholar 

  • S. L. Yao T. Takemoto F. ouyang A. Nakayama E. Suzuki A. Mizuno M. Okumoto (2000) Energy Fuels 14 459–463

    Google Scholar 

  • M. Okumoto A. Mizuno (2000) Catal. Today 71 211–217

    Google Scholar 

  • S. L. Yao F. Ouyang A. Nakayama E. Suzuki M. Okumoto A. Mizuno (2000) Energy Fuels 14 910–914

    Google Scholar 

  • S. Yao E. Suzuld A. Nakayama (2001) Thin Solid films 390 165–169

    Google Scholar 

  • Y. Doi I. Nakanishi Y. Konno (2000) Radiat. phys. Chem. 57 495–499

    Google Scholar 

  • J.-S. Chang A. Lawless T. Yamamoko (1991) IEEE Trans. Plasma Sci. 19 IssueID6 1152–1165

    Google Scholar 

  • C.-J. Liu R. Mallinson L. Lobban (1999) Appl. Catalysis A: General 178 17–27

    Google Scholar 

  • Fey M. G., 88th AIChE National Meeting, Philadelphia (1979), PA, Paper 35C.

  • M. Okurnoto B. S. Rajanikanth S. Katsura A. Mizuno (1998) IEEE Trans. Ind. Appl. 34 949

    Google Scholar 

  • K. Supat A. Kruapong S. Chavadej L. L. Lobban R. G. Mallinson (2003) Energy Fuels 17 474–481

    Google Scholar 

  • D. W. Larkin L. Zhou L. L. Lobban R. G. Mallinson (2001) Ind. Eng Chem. Res. 40 5496–5506

    Google Scholar 

  • S. Kh. Stoilov O. R. Marazov (1984) Sov. J. Opt. Technol. 51 IssueID9 517–518

    Google Scholar 

  • M. Nehmadi Z. Kramer Y. Vaifrah E. Miron (1988) Appl Phys. 22 29–34

    Google Scholar 

  • H. Deguchi T. Hatakeyama E. murata Y. Izawa C. Yamanaka (1994) IEEE J.Quant Electron. 30 IssueID12 2934–2938

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Ghorbanzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghorbanzadeh, A.M., Matin, N.S. Methane Conversion to Hydrogen and Higher Hydrocarbons by Double Pulsed Glow Discharge. Plasma Chem Plasma Process 25, 19–29 (2005). https://doi.org/10.1007/s11090-004-8832-7

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-004-8832-7

Keywords

Navigation